9 research outputs found

    Network-Based Models for Social Recommender Systems

    Get PDF
    With the overwhelming online products available in recent years, there is an increasing need to filter and deliver relevant personalized advice for users. Recommender systems solve this problem by modelling and predicting individual preferences for a great variety of items such as movies, books or research articles. In this chapter, we explore rigorous network-based models that outperform leading approaches for recommendation. The network models we consider are based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. The accurate prediction of individual user preferences over items can be accomplished by different methodologies, such as Monte Carlo sampling or Expectation-Maximization methods, the latter resulting in a scalable algorithm which is suitable for large datasets

    Multichannel social signatures and persistent features of ego networks

    Get PDF
    The structure of egocentric networks reflects the way people balance their need for strong, emotionally intense relationships and a diversity of weaker ties. Egocentric network structure can be quantified with ’social signatures’, which describe how people distribute their communication effort across the members (alters) of their personal networks. Social signatures based on call data have indicated that people mostly communicate with a few close alters; they also have persistent, distinct signatures. To examine if these results hold for other channels of communication, here we compare social signatures built from call and text message data, and develop a way of constructing mixed social signatures using both channels. We observe that all types of signatures display persistent individual differences that remain stable despite the turnover in individual alters. We also show that call, text, and mixed signatures resemble one another both at the population level and at the level of individuals. The consistency of social signatures across individuals for different channels of communication is surprising because the choice of channel appears to be alter-specific with no clear overall pattern, and ego networks constructed from calls and texts overlap only partially in terms of alters. These results demonstrate individuals vary in how they allocate their communication effort across their personal networks and this variation is persistent over time and across different channels of communication

    Network-based models for social recommender systems

    Get PDF
    With the overwhelming online products available in recent years, there is an increasing need to filter and deliver relevant personalized advice for users. Recommender systems solve this problem by modeling and predicting individual preferences for a great variety of items such as movies, books or research articles. In this chapter, we explore rigorous network-based models that outperform leading approaches for recommendation. The network models we consider are based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. The accurate prediction of individual user preferences over items can be accomplished by different methodologies, such as Monte Carlo sampling or Expectation-Maximization methods, the latter resulting in a scalable algorithm which is suitable for large datasets

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19)

    Get PDF
    Objectives: The objective of this study was to estimate the association between tocilizumab or corticosteroids and the risk of intubation or death in patients with coronavirus disease 19 (COVID-19) with a hyperinflammatory state according to clinical and laboratory parameters. Methods: A cohort study was performed in 60 Spanish hospitals including 778 patients with COVID-19 and clinical and laboratory data indicative of a hyperinflammatory state. Treatment was mainly with tocilizumab, an intermediate-high dose of corticosteroids (IHDC), a pulse dose of corticosteroids (PDC), combination therapy, or no treatment. Primary outcome was intubation or death; follow-up was 21 days. Propensity score-adjusted estimations using Cox regression (logistic regression if needed) were calculated. Propensity scores were used as confounders, matching variables and for the inverse probability of treatment weights (IPTWs). Results: In all, 88, 117, 78 and 151 patients treated with tocilizumab, IHDC, PDC, and combination therapy, respectively, were compared with 344 untreated patients. The primary endpoint occurred in 10 (11.4%), 27 (23.1%), 12 (15.4%), 40 (25.6%) and 69 (21.1%), respectively. The IPTW-based hazard ratios (odds ratio for combination therapy) for the primary endpoint were 0.32 (95%CI 0.22-0.47; p < 0.001) for tocilizumab, 0.82 (0.71-1.30; p 0.82) for IHDC, 0.61 (0.43-0.86; p 0.006) for PDC, and 1.17 (0.86-1.58; p 0.30) for combination therapy. Other applications of the propensity score provided similar results, but were not significant for PDC. Tocilizumab was also associated with lower hazard of death alone in IPTW analysis (0.07; 0.02-0.17; p < 0.001). Conclusions: Tocilizumab might be useful in COVID-19 patients with a hyperinflammatory state and should be prioritized for randomized trials in this situatio

    Inference and influence of network structure using snapshot social behavior without network data

    No full text
    Population behavior, like voting and vaccination, depends on the structure of social networks. This structure can differ depending on behavior type and is typically hidden. However, we do often have behavioral data, albeit only snapshots taken at one time point. We present a method jointly inferring a model for both network structure and human behavior using only snapshot population-level behavioral data. This exploits the simplicity of a few parameter model, geometric sociodemographic network model, and a spin-based model of behavior. We illustrate, for the European Union referendum and two London mayoral elections, how the model offers both prediction and the interpretation of the homophilic inclinations of the population. Beyond extracting behavior-specific network structure from behavioral datasets, our approach yields a framework linking inequalities and social preferences to behavioral outcomes. We illustrate potential network-sensitive policies: How changes to income inequality, social temperature, and homophilic preferences might have reduced polarization in a recent election
    corecore